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Abstract—In this paper the authors have developed a method of integral equations to obtain the transfer

potentials for heat and mass in a body of unidimensional infinite cylinder under the influence of the most

general type of boundary conditions. An approximate solution, applicable for small values of generalized
time has also been worked out for the system.

NOMENCLATURE
a, coefficient of diffusivity;
A;, B,, dimensionless known thermophysical
coefficients;
¢, specific content;
fi(x), given functions;
Fo, Fourier number;

r, space variable;

R, radius of the cylinder;
t, time variable;

T, thermal potential;
U

R concentration of the matter;

X, dimensionless space variable;

s density;

A coefficient of conductivity;

g, phase criterion;

o specific heat of evaporation;

9, Soret coefficient;

f,, dimensionless transfer potentials.
Subscripts

m, matter;

q, heat;

x,  derivative with respect to x,
Superscript

0, characteristic entity.
Suffixes

ij.s, 1,2

n, 1,2,...

INTRODUCTION

THERE are a number of processes in which the
diffusion takes place through the pores of solid
body which may absorb and immobilize some
of the diffusing matter with the evolution or
absorption of heat at times accompanied by
heat changes due to change of state. The heat of
evolution or absorption diffuses through the
medium and produces a cross effect on the
absorption of diffusing matter through the body.
Thus the phenomenon becomes different from
the individual transfer phenomenon of heat or
matter and needs a simultaneous consideration
of the transfer phenomena of both.

Crank [1], Luikov and Mikhailov [2] have
considered a number of phenomena of this type
but their considerations were limited with the
simple type of the interaction law between the
surface of the solid body and the medium.
However, in the context of the [2] the authors
have also included a general type of the inter-
action law for an infinite plate. They have
developed an integral equation to solve the
problem by considering first an auxiliary problem
in which the transfer potentials are supposed to
be prescribed.

In this paper, the authors have applied a
similar approach as in [2] to obtain the transfer
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potentials for heat and matter in an infinite
cylinder. In the first step, they have constructed
an auxiliary problem in which the fluxes of the
transfer potentials at the surface are prescribed.
An approximate solution has also been worked
out for small values of generalized time.

STATEMENT OF THE PROBLEM

The transfer of heat and matter in a capillary
porous body is followed by the equations

oT oUu
and
U
c,y aa—t = V(4 (VU + oVT)), 2)

where T = T(r,t) and U = U(r,t) are the
transfer potentials of heat and matter.

Now we shall define some dimensionless
variables:

x =r/R, Fo = aqt/RZ, 8, = T/T, 6, =U/U°

and the similarity criteria:
(i) the Luikov criterion of the field of bound
matter in relation to the temperature field

Lu =a,/a,
(ii) the Posnov criterion for bound matter
Pn =46,T°U°
(iii) the Kossovich criterion for bound matter
Ko = pU®c,T°.

The equations (1) and (2) can be written in the
dimensionless form with the aid of the dimen-
less variables and criteria as defined above

26,(x, Fo) _ 9%0,(x, Fo)

dFo ox?
1 00,(x, Fo) 06, (x, Fo)
+ . Em + ¢Ko —Fe 3)
and
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90,(x, Fo) _ I [azez(x, Fo) N 106, (x, Fo)]

oFo ox? x  0Ox
2
+ LuPn 0 01("2’F°) + lagl(x, Fo) @
ox X ox

0<x<l1, Fo>0.

The boundary conditions for the system of
differential equations (3) and (4) are supposed to
be

8, (1, Fo) + A,6,(1, Fo) + B,6,(1, Fo)

= ¢,(Fo), (5
0, (1, Fo) + 4,0, (1, Fo) + B,0,(1, Fo)
= ¢,(Fo) (6)
and
6,0, Fo) = 0, (D

where A, and B, are aggregate of known dimen-
sionless thermophysical coefficients and ¢,(Fo)
are prescribed fluxes to be determined by the
experiment.

For the complete statement of the problem,
we shall specify the initial conditions as

0:(x,0) = f(x), ®

where f,(x) are the given functions.

SOLUTION OF THE PROBLEM
Let us take an auxiliary problem in which the
boundary conditions (5) and (6) are replaced by
6,..(1, Fo) = ,(Fo). ©)

We shall now determine the solution of this
auxiliary problem with the aid of the conditions
(7) and (8). For this purpose, we define a Hankel
transform with respect to space variable x:

0.(p,Fo) = i x0,(x, Fo) J,(p x)dx,  (10)

where p = p, are the roots of the characteristic

equation
J,(p) =0 (11)

and a Laplace transform with respect to time
variable Fo,
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8(p,5) =] e~*0,(p, Fo) dFo.
0
The inversion formulae for (10) and (12) are:

1
6,(x,Foy=2 j x8,(x, Fo)dFo

+2% 0(5’"”‘)9@“,1«*0) (13)
n=1 JG
and
o+io
0p,Fo) ==— | e 0,(ps)ds, (14)

where the integration is carried over the straight
line s = o in the complex plane.

Simultaneous applications of the Hankel and
Laplace transforms to the equations (3) and (4)
yield a set of two simultaneous equations

s8, = 7,(0) = ,(5) — p*B, + €Ky(sD, — £,(0)
' (15)
and
sB, = 7,(0) = Lu(@,(5) - p*D,)
+ LuPn(g,(s) — p*8)).  (16)

On solving these two equations, we find

bip,s) = il[ “Jﬂw

i s 4+ VI Lup?

AL

+B,sm o(P)] 1mn

where

1 .
v: =—§—{[1 +it éKoPn] + (= 1y

1 S A
X ([1 + n + sKoPn] - E) } (18)

and the constant coefficients are given by
VZ

"'( 1}} Vz’

={- 1)J V2 eKo;

(12) B = (—1y

1 —V? — eKoLuPnV?}

vi-v: ’
2 L =(- 1)’ V2 eKoLuV;
= (- 1)’ V2 Pn,
vz {; — ¢KoPn
AL = (-1 :
vi-ni
V}!
o 2 = (— 1)’ 5 LuPn,
Vi
__!__ —v
2 2 =(~ 1)’ LuPn

1

Applying the inversion formulae (13) and (14)
the expressions for transfer potentials are
obtained as

0,(x, Fo) = Z [A;SPJS + B QJ.S], {19)
=1
where
1
& Jolpx)
P = d 20N
s 2[ ! xf.(x)dx + ";l 70
exp (— LupV3Fo) j‘ x f() o (1, x )dx] 20)
and
Fo J {ﬂ )
.= 2 du + § JoltX
0 [ of x,(u) du 2T )
Fo
(21

J‘ J(u) exp(—p? VzLuF 0-11) du]
[4]

#, are the roots of the equation J, (1) =
The expressions (19} are the sohmons for the
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auxiliary problem. In order to solve the present

problem it is necessary to determine y,(Fo) from

the original boundary conditions (5) and (6).
Substituting the values of 00, /ax and 6

— 1 frnen tha amsinti~an N\ nead / R,

l
L ~La
x = 1 from the equations (9) and (19), we o otdm

Fo
2
X, (Fo)+2= Y, (AIB}S + Ble.s)I:f x,() du
Jis=1

0
Fo

© x)
Z -’o(ﬂ )
exp[—u2 VJ?Lu(F o — u)] x,(u) du]

2
Y (4,4% + B, A2)P,

1“7 js
Js=1 I

= ¢,(Fo) — (22)

and

2
A,x,(Fo) + x,(Fo) + 2B, ¥

Jis=1

w

Fo
B;[st(u) du + i
]

Fo
Jo(H,%)
Joln,) )

n=1

exp [ —p2Lu(Fo — u)]y,(u) du]
2
Z= js Js®

The integral equations (22) and (23) determine
the values of the functions },(Fo) and by substi-
tuting the values of x (u) in (21), we obtain the
expressions for Q, and hence the expressions
for the transfer potentials are determined.

However, it is very difficult to solve the integral
equations (22) and (23). We are going to deter-
mine an approximate solutions of y,(Fo) for
small values of generalized time which may serve
the needs of the engineering calculations.

Under the Laplace transformation, the integral
equations (22) and (23) take the form.

2
2,05) + 221 A,B, + B B2)
Ss=
<1 Ly Jol) 1
s w1 Jow,) s+ Vil

= ¢,(Fo) — 23)

%@ 2,9
(24)

1
%&+;

and

2
1,(8) + 23,(5) + 2B, Y,

Js+1

S Jolu,x) 1
1 Jo,) s+ p,ViLu

)J?S(S) = §,(5)

(25)

where
4,(s) = je"“ {dn(FO)
0

i (4,A* + B Al)P }dFo (26)

1% js
js=1 J

and

gz(s) = J\
0

e—sFo {d)z(Fo)

@7

2
~ B, Zl AJZ.SPJ.S} dFo.

Js

Equations (24) and (25) are two ordinary
simultaneous equations in 7,(s) and ,(s) and
contain a series which converges ultimately.
Now approximating the term

1
s + uLuv?”

w | -

we have

X(s) + 2 2

Js=1

(1 555

[(AIB}S + B,B)

ml»—t

)] =49,() (28)

and

M8

7a(5) + A,7,(5) + 2B,

J,8=1
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X[B;(HZ

o(u,.X)) ]
o) )5
= 3,(S). 29

Solving these two equations for %,(s) and
¥2(s) and restricting to the terms of order 1/s
only, we obtain

2,09 = [é (s){l + ?‘iz B,
© 2

Jol, XN\ 2,
(14D S - 200,

x (4,B;, + B,B%)

- Jo(1,%) 200
(e ) BN (+2)
and
22(8) = [_él(s) {Az + %28121

n=
j=1

(30)

oli,%)

X (1 +ZJ
n=1

T )+ a0

2
2
x {1 + ;Z(AIB}I + B,BY)
j=1

(31)

where

2
= Z(AIB}1+BB2 + B,B%,

— A,A,B, — 4,B B%)

The inversion can be carried by expanding
(1 + 20/s)”! and considering the term of order
s™! and s° only. The inverted expression of
%,(s) are

Fo
x,(Fo) = g,(Fo) — ZaIgl(u) du
[4}

@

+2Bi3%(1+z

i= n=1

J O(Junx)
J O(I’ln)

jgl(u) du — 22(1418]21 + B Bz)

and

X2(FO) = - Azgi(Fo) + gz(Fo)

Fo Fo

— 24,0 j g,(u) du + 2a j g,(u) du
[}

[i]
2 o0
— 2B ZBz. (1+Z
j=1

o(u,.X))
Jou,)

ng(u) du + 22(1418;1 + B,B? 1)

TN
x (1 + Z _—Jo(l‘n) ) ! g,(u) du. (33)

Expressions (32) and (33) determine the
auxiliary functions x(Fo) and this after sub-
stitution in equation (21) gives out the value of
the function Q, which ultimately determines
the function 6(x, Fo).

The boundary conditions referred in (5) and
{6) are of most general type and include all
types of the interaction law between solid
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body and gaseous medium. The suitably chosen 2. A. V. Luikov and Y. A. MIKHAILOV, Theory of Energy

values of the thermophysical coefficients A, and and Mass Transfer. Pergamon Press, Oxford (1965).
! 3. V. 1. SMIrNoOV, Integral Equations and Partial Differential

Bi determine any type of the interaction law. Equations—A Course of International Series on Higher
Mathematics, Vol. IV, Addison-Wesley (1964).
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UNE APPROCHE PAR UNE EQUATION INTEGRALE DU PROBLEME DE TRANSFERT
THERMIQUE ET MASSIQUE DANS UN CYLINDRE INFINI

Résumé—Les auteurs ont développé une méthode d’équations intégrales pour obtenir les potentiels de

transfert de chaleur et de masse dans un corps cylindrique unidimensionnel sous l'influence de conditions

aux limites de type le plus général. On a recherché pour le systéme une solution approchée, applicable
pour des petites valeurs du temps généralisé.

LOSUNG DES WARME- UND STOFFUBERGANGSPROBLEMS IN EINEM UNENDLICH
LANGEN ZYLINDER MIT HILFE VON INTEGRALGLEICHUNGEN

Zusammenfassung—Die Autoren haben eine auf Integralgleichungen basierende Methode entwickelt, mit

der sich die Ubertragungspotentiale fiir Warme und Stoff in einem eindimensionalen, unendlich langen

Zylinder unter dem Einfluss des allgemeinsten Typs von Randbedingungen gewinnen lassen. Eine

Niherungslosung, giltig fiir kleine Werte des generalisierten Zeitparameters, ist ebenfalls fiir das System
ausgearbeitet worden.

NHTETPAJIBHBIIT METOJ, PEINIEHWUA 3AJIAY TEIIJIO- 1 MACCO-OBMEHA
B BECKOHEYHOM IWJIVWHIOPE

AnnoTanma—B cTaThe MPUBOJMTCA METOX pEIIeHHA HHTErPAIbBHBIX YpaBHEHu#, pazpabo-

TAHHEI 1715 OTIpeieleHUA NOTCHINATOB IEPEHOCA TEMJIA H MACCH B OJIHOMEPHOM (ECKOHEUHOM

HUJIHH/pE TIPH CaMBIX OOIUMX TpaHMYHHX yciuoBHAX. IlonydeHo npubinKeHHOe peleHUe,
NpUMEeHNMOe JJIA MaJBIX 3HAUeHITl fe3pa3MepHOrO BpeMeHil.



